
www.manaraa.com

ODYSSEY: Software Development Life Cycle Ontology

J. I. Olszewska and I. K. Allison
School of Computing and Engineering, University of West Scotland, U.K.

Keywords: Software Engineering, Knowledge Engineering, Domain Ontology, Domain Analysis and Modeling, Decision
Support System, Intelligent Agents, Autonomous Systems.

Abstract: With the omnipresence of softwares in our Society from Information Technology (IT) services to autonomous
agents, their systematic and efficient development is crucial for software developers. Hence, in this paper,
we present an approach to assist intelligent agents (IA), whatever human beings or artificial systems, in theirs
task to develop and configure softwares. The proposed method is an ontological, developer-centred approach
aiding a software developer in decision making and interoperable information sharing through the use of the
ODYSSEY ontology we developed for the software development life cycle (SDLC) domain. This ODYSSEY
ontology has been designed following the Enterprise Ontology (EO) methodology and coded in Descriptive
Logic (DL). Its implementation in OWL has been evaluated for case studies, showing promising results.

1 INTRODUCTION

Software Development Life Cycles (SDLCs) have
been introduced in order to design and develop soft-
wares in a coherent, consistent, and efficient way as
recommended in (ISO/IEC/IEEE 15288 International
Standard, 2015) and (ISO/IEC/IEEE 12207 Internati-
onal Standard, 2017).

SDLCs are mainly task-oriented processes. In
particular, they adopt a task decomposition approach
(Dix et al., 2004), i.e. they describe how the task to
develop a software is split into sub-tasks and in which
order these sub-tasks have to be performed.

On the other hand, software development has
been barely studied from the developers’ perspective
(Roehm et al., 2012). Hence, with the raise of in-
telligent and autonomous agents in today’s applicati-
ons, we suggest to assist the developers with the soft-
ware development task by adopting a software deve-
lopment approach based on developer experience or
more generally on intelligent agent experience we cal-
led AX.

Thenceforth, we propose to study the SDLCs from
a developer’s knowledge point of view and thus to
perform the SDLCs’ task analysis by applying both
knowledge-based technique and entity-relation ba-
sed analysis. Indeed, the knowledge-based technique
(Dix et al., 2004) looks at what users or developers
need to know about the objects and actions involved
in a task and how that knowledge is organized. On

the other hand, the entity-relation-based analysis (Dix
et al., 2004) identifies actors (e.g. developers), ob-
jects and the relationships between them as well as
the action they perform.

For this purpose, we adopted an ontological ap-
proach, since an ontology is an artificial-intelligence
method (Davies et al., 2003) which provides an expli-
cit specification of a conceptualization (Gruber, 1995)
and encompasses both knowledge concepts of the
analysed domain (i.e. classes such as actors, acti-
ons, objects) and the relations between them (Gua-
rino, 1998).

Ontologies have been used for various domains,
from intelligent vision systems (Olszewska, 2011),
(Olszewska, 2012), to autonomous and robotic sys-
tems (Olszewska et al., 2017), (Fiorini et al., 2017),
as ontologies are a convenient mode to share common
knowledge between various agents in an interoperable
way (Bayat et al., 2016).

The few ontologies developed for the software en-
gineering domain (Bermejo-Alonso, 2006) aim to pri-
marily contribute to the Model-Driven Software De-
velopment (MDSD) (Leonard et al., 2017) or Model-
Driven Architecture (MDA) and other software de-
velopment processes such as meta-models involving,
e.g. the Unified Model Language (UML) and/or
the Business Process Model and Notation (BPMN)
(Olszewska et al., 2014), resulting in the Ontology-
Driven Software Development (ODSD) (Pan et al.,
2012). Hence, the ODSD area focuses, despite its

Olszewska, J. and Allison, I.
ODYSSEY: Software Development Life Cycle Ontology.
DOI: 10.5220/0006957703030311
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018) - Volume 2: KEOD, pages 303-311
ISBN: 978-989-758-330-8
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

303

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CLoK

https://core.ac.uk/display/305109315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


www.manaraa.com

name, on the MDE analysis of a specific project (Iso-
tani et al., 2015) or a specific service (Knublauch,
2004) rather than on any SDLC process itself.

On the other hand, some ontologies have been
produced to serve as specific Computer-Aided Soft-
ware Engineering (CASE) tools for software quality
check, such as the Ontology-based Development En-
vironment (ODE) (Falbo et al., 2003), for software
requirement capture like the Ontology-driven Requi-
rements Analysis Tool (OntoRAT) (Al-Hroub et al.,
2009), or for software requirements traceability, e.g.
through the Marrying Ontology and Software Techno-
logy (MOST) project product (Pan et al., 2012). Ho-
wever, these ontologies are not dedicated to the full
software development life cycle modelling.

Hence, in this paper, we propose to develop an
ontology for the Software Development Life Cycle
(SDLC) domain.

This domain ontology for software development
life cycles we called ODYSSEY aims in first instance
to capture the knowledge included in the SDLCs and
then, to formalize and implement the SDLC major
concepts and their properties.

The proposed ontology reflects a developer-
centric approach for software development life cy-
cles; the developer being an Intelligent Agent (IA),
whatever a human or an artificial one, i.e. an agent ca-
pable of knowing and acting as well as capable of em-
ploying its knowledge in its actions (Bermejo-Alonso,
2006). Furthermore, ODYSSEY ontology targets the
software SDLC methodologies conceivably followed
by developers rather than the possibly created soft-
ware artifacts.

The contributions of this paper are twofold. On
one hand, as far as we know, ODYSSEY is the
first ontology for the software development life cy-
cle domain. On the other hand, ODYSSEY ontology
is the basis for software development based on intel-
ligent agent experience (AX).

The paper is structured as follows. In Section 2,
we present our ontology domain, i.e. the software de-
velopment life cycles (SDLC), while the domain on-
tology itself (ODYSSEY) is described and evaluated
in Section 3. Conclusions are drawn up in Section 4.

2 PRELIMINARIES: SOFTWARE
DEVELOPMENT LIFE CYCLES

Existing Software Development Life Cycles (SDLCs)
(Sommerville, 2015) could be categorized as Plan-
Driven Life Cycles Models or as Agile Development
Models.

Plan-driven life cycle models are characterized by
sequences of steps to undertake the solution formali-
sation, product(s) development, solution delivery, and
solution support. These software development met-
hods include SDLCS such as the Waterfall model, the
Prototyping model, the V-Model, and the Spiral mo-
del.

On the other hand, the Agile Development Models
are underpinned by the Agile manifesto1 and mainly
consist in iteratively repeating three major phases, i.e.
the implementation phase, the delivery and feedback
phase, and the next-iteration planning phase. Well-
established Agile SDLCs are the Rapid Application
Development (RAD), the Dynamic System Develop-
ment Method (DSDM), Extreme Programming (XP),
and SCRUM.

Among all these SDLCs, the first SDLC which has
been used in a more systematical way by software
developers is called Waterfall and was proposed by
(Royce, 1970). It is basically a linear, sequential mo-
del where each phase ‘is dependent of’ the previous
one, i.e. must be completed before the following one
can be started, leading to a ‘cascade’ effect, whence
a ‘waterfall’ model. This model has been extensively
applied to large engineering systems, with all the pro-
cess activities planned and scheduled before the start
of the software development, usually spanning over a
time scale of twelve months.

Originally, the Waterfall model was constituted
by seven, consecutive stages, namely, system require-
ments, software requirements, analysis, program de-
sign, coding, testing, and operations as presented in
Fig. 1.

The first stage consists in specifying the system
requirements, i.e. the description of what the end sy-
stem is expected to provide to the customer/user. That
includes the particular functions the system must per-
form as well as the information about the environment
in which the final product will operate. This descrip-
tion is usually recorded in the client’s language.

Thence, in the second stage, the software develo-
per/designer expresses the software requirements in a
language suitable for potential implementation.

The next stage focuses on the analysis of how the
system will produce the intended output(s). That le-
ads to the architectural design of the system and in-
volves a high-level decomposition of the system into
components or software units. This implies not only
the functional decomposition of the system to deter-
mine which component will provide which services,
but also the characterization of the components’ inter-
dependencies and the resources’ sharing between the
components. It is worth noting that the components

1http://agilemanifesto.org/

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

304



www.manaraa.com

Figure 1: Overview of the original SDLC Waterfall model.

can either be imported from existing available soluti-
ons or be independently developed from scratch.

The next stage concentrates on the program de-
sign. This detailed design is a refinement of the com-
ponent description provided by the architectural de-
sign. Whilst the program design aims first to address
the behavioural constraints of higher-level descrip-
tion, it is even a better product when it also satisfies
non-functional requirements of the system such as ef-
ficiency, reliability, security, etc. Thus, the language
used for the detailed design must allow some analysis
of the design in order to assess these systems’ proper-
ties. At this stage, it is also important to keep track of
the considered design options and the justifications of
the choices which have been made.

Then, the fifth stage is the implementation of the
detailed design in some executable programming lan-
guage.

After this coding stage, the next one consists in
testing each software component to verify it performs
correctly according to some test criteria. Once all the
components have been tested individually, they are in-
tegrated as per architectural design. Further testing is
done to ensure both the dependable behaviour of the
entire system and the acceptable use of any shared
resources. It is also possible at this time to perform
some acceptance testing with the clients to check that
the system meets their expectations. It is only after
acceptance of the integrated system that the product
could be released to the customer. However, in the
meantime, it may also be necessary to certify the fi-
nal system according to international standards and/or
further requirements imposed by some authority.

The final stage or operation stage deals mainly
with the system maintenance until a new version of
the product is developed or the product is phased out.
Consequently, the last stage is the longest one in terms
of duration (Dix et al., 2004).

The waterfall model presents the advantages of
being a simple linear process that addresses software

quality management and project management, and
that tries to eliminate as many problems as possible
in each phase. However, one of the main flaws of this
sequential approach is that the idea of iteration has not
been embedded in the original waterfall’s model (Dix
et al., 2004).

Indeed, on one hand, in case of rapidly changing
businesses’ needs and operating environment, which
lead to important changes of the requirements over
time, freezing the system and software requirements
for months or years, while completing the design and
implementation, could be not efficient. On the other
hand, if a requirement is identified in the implementa-
tion and unit testing phase as too expensive to be im-
plemented, this requires the update of the overall re-
quirement document in order to remove that require-
ment, i.e. the rework of the first phase, and possibly of
the system and software design phase as well. conse-
quently, that drains resources and stirs up delays in the
overall development process. The early freeze of the
software specifications to avoid any change to it could
be a short-term solution, but such freeze could be con-
sidered later as premature and be not effective, since
problems will then have to be overcome by implemen-
tation tricks (Sommerville, 2015). Hence, the need to
rework on a software system when changes are made
to the requirements for whatever reason implies the
waterfall model is only appropriate for some types of
systems such as embedded systems, critical systems,
or large software systems (Sommerville, 2015).

As in practice, a SDLC has to inherently handle
change along the software development, some furt-
her variations of the Waterfall model have been pre-
sented in the literature, with some versions incorpo-
rating some levels of iterations (Sommerville, 2015).
Thence, the Waterfall SDLC could also be modeled in
terms of five fundamental software development acti-
vities, where the outputs from one activity are inputs
for the next one, while the last activity’s feedback in-
forms all the previous ones (Fig. 2).

More specifically, the first phase or requirements
analysis establishes the system’s services, constraints,
and goals through consultations between the software
developer and the system user(s), leading to the de-
tailed system specification.

Secondly, the system and software design phase
defines the software system architecture, identifying
and describing the fundamental abstractions and their
relationships of the overall system as well as allo-
cating the requirements to the corresponding subsys-
tems.

During the third phase called implementation and
unit testing, the software code is produced and results
in a set of programs or program units which are indi-

ODYSSEY: Software Development Life Cycle Ontology

305



www.manaraa.com

Figure 2: Overview of the enhanced SDLC Waterfall mo-
del.

vidually tested and verified to ensure each unit meets
its specification.

The fourth phase is dedicated to the integration
and system testing, i.e. the individual program units
are integrated into the overall system and the overall
system is tested to check that all the software require-
ments have been met, before delivering the software
system to the customer.

Finally, the operations and maintenance phase
aims to install the product in its work environment and
to put it in practical use. In particular, maintenance,
which is the longest phase of the waterfall SDLC, in-
volves the correction of errors in the system which
were not discovered in the earlier stages of the life
cycle, i.e. before the release of the product. Mainte-
nance also consists in improving the implementation
of the software units and enhancing the system’s ser-
vices when new requirements are discovered. There-
fore, maintenance provides feedback to all of the ot-
her activities in the life cycle (Fig. 2). For example,
when a program error emerges, it implies a rework on
the implementation and unit testing phase, whereas if
a design errors appears, it involves repeating the sy-
stem and software design phase. On the other hand, in
case of omissions or when the need for a new functi-
onality is identified, the requirement analysis phase is
rerun to upgrade the product (Sommerville, 2015).

Hence, a SDLC such as the Waterfall approach
could be modelled in various ways, leading among ot-
hers to different names of the phases and to different
sequences of its execution. Therefore, the ODYSSEY
ontology as described in Section 3 aims to contribute
to the elicitation of the SDLC intra-model knowledge
as well as its interoperable sharing.

3 PROPOSED ONTOLOGY

To develop the ODYSSEY ontology, we followed
an ontological development life cycle (Gomez-Perez
et al., 2004) based on the Enterprise Ontology (EO)
Methodology (Dietz, 2006), since EO is well sui-
ted for software engineering applications (van Kervel
et al., 2012).

The adopted ontological development methodo-
logy consists of four main phases covering the whole
development cycle as follows:

1. identifications of the purpose of the ontology
(Section 3.1);

2. ontology building which consists of three parts:
the capture to identify the domain concepts and
their relations; the coding to represent the onto-
logy in a formal language; and the integration to
share ontology knowledge (Section 3.2);

3. evaluation of the ontology to check that the de-
veloped ontology meets the scope of the project
(Section 3.3);

4. documentation of the ontology (Section 3.4).

3.1 Ontology Purpose

The ODYSSEY ontology domain has been defined by
the software development life cycles (SDLCs) presen-
ted in Section 2, while the scope of this ODYSSEY
domain ontology is to assist intelligent agent(s) when
using a SDLC to develop a software.

Indeed, it has been found that, on one hand, hu-
man software developers spent most of their time
in activities such as information seeking (Ponzanelli
et al., 2017) or interacting (Ciccozzi et al., 2017). On
the other hand, it has been recently identified than the
production of softwares for robotic systems (Ciccozzi
et al., 2017) requires, among other, subsystems inter-
operability and human-robot synergy such as Human-
Robot Interactions (HRI) (Calzado et al., 2018) or
Human-Swarm Teaming (HST) (Kolling et al., 2016).

Since ontologies intrinsically allow to elucidate
concepts, to share information in an interoperable
way, and to perform automated reasoning, the ODYS-
SEY ontology purpose is to contribute to (i) sup-
port a human developer in decision making about
SDLCs; (ii) help human developers in collaborating
on team’s software development; (iii) guide autono-
mous system(s) in reconfiguring their softwares; (iv)
aid collaborative mixed human-robot teams in inte-
racting, synchronising or configuring software agents.

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

306



www.manaraa.com

3.2 Ontology Building

The knowledge capture consists in the identification
of concepts and relations of the SDLC domain descri-
bed in Section 2. The knowledge coding is done in
Descriptive Logic (DL). In particular, the concept of
SDLC ‘waterfall model’ (Fig. 1) is defined in DL as
follows:

Water f all Model vModel

u∃hasPhase={P1=System Requirement}

u∃hasPhase={P2=So f tware Requirement}

u∃hasPhase={P3=Analysis}

u∃hasPhase={P4=Program Design}

u∃hasPhase={P5=Coding}

u∃hasPhase={P6=Testing}

u∃hasPhase={P7=Operations}.

(1)

Furthermore, the original waterfall model could
be formalised in temporal DL as follows:

Water f all1vWater f all Model

u (�t1...tk)
(P1mP2)...(Pk−1mPk)

· (P1@t1 u ...uPk@tk)

(2)

with k = 7, the number of phases of the SDLC wa-
terfall model, and meet, the temporal relation defined
in temporal DL as introduced by (Olszewska, 2016):

PimPj ≡ meet(Pi@ti,Pj@t j)v Temporal Relation

u (�ti)(�t j)

(ti+ = t j− )

· (Pi@ti uPj@t j),

(3)
where the temporal DL symbol � represents the

temporal existential qualifier, and where a time inter-
val is an ordered set of points T = {t} defined by end-
points t− and t+, such as (t−, t+) : (∀t ∈ T )(t > t−)∧ (t < t+).

The enhanced waterfall model (Fig. 2) could be
then represented in DL as follows:

Enhanced Water f all Model vModel

u∃hasPhase={S1=Requirement Analysis}

u∃hasPhase={S2=System and So f tware Design}

u∃hasPhase={S3=Implementation and Unit Testing}

u∃hasPhase={S4=Integration and System Testing}

u∃hasPhase={S5=Operation and Maintenance},

(4)

with S1 = P1 tP2, S2 = P3 tP4, S3 ≡ P5, S4 ≡ P6, and S5 ≡ P7.

Figure 3: Main classes of the SDLC domain.

Figure 4: Main properties of the SDLC domain.

Moreover, the enhanced waterfall model could be
expressed in temporal DL as follows:

Water f all2vWater f all Model

u (�t1...tl)
(S1mS2)...(Sl−1mSl)

(Sl mS1)...(Sl mSl−1)

· (S1@t1 u ...uSl @tl),

(5)
with l = 5, the number of stages of the SDLC en-

hanced waterfall model.
The ontology is implemented in the Web Onto-

logy Language (OWL) language, using an appropri-
ate tool like Protege v5.2.0 IDE and applying HermiT
reasoner v1.3.8.413 (Glimm et al., 2014) to perform
automated reasoning. An excerpt of the encoded con-
cepts is presented in Fig. 3, while some properties are
shown in Fig. 4. It its worth noting that the property
isDependentOf could be represented in temporal DL
as follows:

isDependentO f v Phase Property

u (�ti...t j)

(PimPj) · (Pi@ti uPj@t j).

(6)

3.3 Ontology Evaluation

The ontology evaluation ensures that the developed
ontology meets all the requirements (Dobson et al.,
2005).

ODYSSEY: Software Development Life Cycle Ontology

307



www.manaraa.com

Figure 5: Excerpt of the scenario implementation, with the instantiation waterfall1 of the ‘waterfall model’ concept as well
as the asserted and inferred, related properties.

Figure 6: Excerpt of the scenario implementation, with the instantiation waterfall2 of the ‘enhanced waterfall model’ concept
as well as the asserted and inferred, related properties.

Figure 7: Some samples of query results in context of the proposed test scenario.

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

308



www.manaraa.com

Figure 8: Some values of the ODYSSEY metrics.

For this purpose, experiments have been carried
out using Protege v5.2.0 IDE and applying HermiT
reasoner v1.3.8.413. In the experiment scenario, an
agent 1 which is a human being adopts the waterfall
model (instantiated as Waterfall1) to develop a project
1, while an agent 2 which is an artificial system uses
the enhanced waterfall model (instantiated as Water-
fall2) to work on the same project, as illustrated in
Figs. 5-6, respectively. A sample of queries for this
scenario is presented in Fig. 7.

In this case, the agent 1 could query the system,
on one hand, to receive guidance about the chosen
SDLC’s steps to follow (e.g. waterfall 1) and, on the
other hand, to further understand/synchronize with
another agent like the agent 2 which is working on
the same project, while having adopted a similar but
different SDLC (e.g. waterfall 2).

In these experiments, ODYSSEY has provided
100% correct answers and no inconsistency has been
reported.

Moreover, the evaluation of ODYSSEY uses me-
trics presented in (Tartir et al., 2018) and (Hlomani
and Stacey, 2014). The extracted values by Protege
are presented in Fig. 8. We can observe that the DL
expressivity is SH OI F (D). It is worth noting the re-
asoner works under the open-world assumption, i.e. if
for a question, there is no information in the ontology,
then the answer of the system is ‘does not know’, and
not ’does not exist’. To obtain the latter one, infor-
mation should be explicitly provided, but adding all
these closure-type assertions can slow down the rea-
soner. So, in practice, a trade-off should be achieved
between computational efficiency and completeness.
Actually, ODYSSEY performs in real time and con-
tains 186 axioms for 25 classes, leading to its high
richness.

Furthermore, ODYSSEY cohesion could be asses-
sed using the number of root classes which is equal to
1, the number of leaf classes which is equal to 17, and
the average depth which is equal to 4.

All these metrics indicate ODYSSEY shows pro-
mising performance and could efficiently serve as
the basis for further extensions to include even more

SDLC model knowledge.

3.4 Ontology Documentation

The ODYSSEY ontology has been documented in
Section 3. It is a middle-out, domain ontology
which has been developed from scratch using non-
ontological resources such as primary sources, e.g.
(Royce, 1970). ODYSSEY is not dependent of any
particular software/system/service/project, but it fo-
cuses rather on the knowledge included in the main
SDLCs. It is worth noting the ODYSSEY has not
reuse any existing ontology, since it is the first on-
tology in its kind for the SDLC domain. However,
the ODYSSEY ontology could be reused itself in the
future, since on one hand, more SDLC models (Abra-
hamsson et al., 2003) could be captured and formali-
sed. On the other hand, the formalization of the po-
tential changes which might occur through the soft-
ware development process (Allison and Merali, 2007)
could be added as well to expand the present ODYS-
SEY ontology and lead to a dynamic ontology.

4 CONCLUSIONS

In this work, ODYSSEY ontology aids developers to
choose and use SDLCs by expliciting the knowledge
contained in the SDLCs and by allowing implicitly a
flexible use of the SLDCs. On the other hand, ODYS-
SEY allows an increased interoperability between hu-
mans and/or autonomous systems, when developing
a software or reconfiguring it, and thus constitutes a
step further towards intelligent agents’ collaboration.

REFERENCES

Abrahamsson, P., Warsta, J., Siponen, M. T., and Ron-
kainen, J. (2003). New directions on Agile met-
hods: A comparative analysis. In Proceedings of the
IEEE International Conference on Software Engineer-
ing (ICSE), pages 244–254.

Al-Hroub, Y., Kossmann, M., and Odeh, M. (2009). De-
veloping an Ontology-driven Requirements Analysis
Tool (OntoRAT): A use-case-driven approach. In Pro-
ceedings of the IEEE International Conference on the
Applications of Digital Information and Web Techno-
logies, pages 130–138.

Allison, I. K. and Merali, Y. (2007). Software process
improvement as emergent change: A structuratio-
nal analysis. Information and Software Technology,
49(6):668–681.

Bayat, B., Bermejo-Alonso, J., Carbonera, J. L., Facchi-
netti, T., Fiorini, S. R., Goncalves, P., Jorge, V., Ha-

ODYSSEY: Software Development Life Cycle Ontology

309



www.manaraa.com

bib, M., Khamis, A., Melo, K., Nguyen, B., Olszew-
ska, J. I., Paull, L., Prestes, E., Ragavan, S. V., Saeedi,
S., Sanz, R., Seto, M., Spencer, B., Trentini, M., Vo-
sughi, A., and Li, H. (2016). Requirements for buil-
ding an ontology for autonomous robots. Industrial
Robot, 43(5):469–480.

Bermejo-Alonso, J. (2006). Ontology-based software engi-
neering. Technical Report ASLab-ICEA-R-2006-016.

Calzado, J., Lindsay, A., Chen, C., Samuels, G., and Ol-
szewska, J. I. (2018). SAMI: Interactive, multi-sense
robot architecture. In Proceedings of the IEEE Inter-
national Conference on Intelligent Engineering Sys-
tems, pages 317–322.

Ciccozzi, F., Ruscio, D. D., Malavolta, I., Pelliccione, P.,
and Tumova, J. (2017). Engineering the software of
robotic systems. In Proceedings of the IEEE/ACM
International Conference on Software Engineering
(ICSE), pages 507–508.

Davies, J., Fensel, D., and Harmelen, F. V. (2003). Towards
the semantic web: Ontology-driven knowledge mana-
gement. Wiley.

Dietz, J. (2006). Enterprise Ontology. Springer.
Dix, A., Finlay, J., Abowd, G. D., and Beale, R. (2004).

Human Computer Interaction. Pearson, 3rd edition.
Dobson, G., Lock, R., and Sommerville, I. (2005). QoS-

Ont: A QoS ontology for service-centric systems. In
Proceedings of the EUROMICRO International Con-
ference on Software Engineering and Advanced Ap-
plications, pages 80–87.

Falbo, R. D. A., Natali, A. C. C., Mian, P. G., Bertollo,
G., and Ruy, F. B. (2003). ODE: Ontology-based soft-
ware development environment. In Proceedings of the
Congreso Argentino de Ciencias de la Computacion.

Fiorini, S. R., Bermejo-Alonso, J., Goncalves, P., de Frei-
tas, E. P., Alarcos, A. O., Olszewska, J. I., Prestes, E.,
Schlenoff, C., Ragavan, S. V., Redfield, S., Spencer,
B., and Li, H. (2017). A suite of ontologies for robo-
tics and automation. IEEE Robotics and Automation
Magazine, 24(1):8–11.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., and Wang,
Z. (2014). HermiT: An OWL 2 Reasoner. Journal of
Automated Reasoning, 53(3):245–269.

Gomez-Perez, A., Fernandez-Lopez, M., and Corcho, O.
(2004). Ontological Engineering. Springer-Verlag.

Gruber, T. R. (1995). Toward principles for the design of
ontologies used for knowledge sharing. International
Journal Human-Computer Studies, 43(5-6):907–928.

Guarino, N. (1998). Formal ontology in information sys-
tems. In Proceedings of the International Conference
on Formal Ontology in Information Systems (FOIS),
pages 3–15.

Hlomani, H. and Stacey, D. (2014). Approaches, methods,
metrics, measures, and subjectivity in ontology evalu-
ation: A survey. Semantic Web Journal, 1(5):1–11.

ISO/IEC/IEEE 12207 International Standard (2017). Sys-
tems and Software Engineering - System Life Cycle
Processes.

ISO/IEC/IEEE 15288 International Standard (2015). Sys-
tems and Software Engineering - System Life Cycle
Processes.

Isotani, S., Bittencourt, I. I., Barbosa, E. F., Dermeval, D.,
and Paiva, R. O. A. (2015). Ontology driven software
engineering: A review of challenges and opportuni-
ties. IEEE Latin America Transactions, 13(3):863–
869.

Knublauch, H. (2004). Ontology-driven software develop-
ment in the context of the semantic web: An example
scenario with Protege/OWL. In Proceedings of the
IEEE International Workshop on the Model-Driven
Semantic Web (MDSW), pages 381–401.

Kolling, A., Walker, P., Chakraborty, N., Sycara, K., and
Lewis, M. (2016). Human interaction with robot
swarms: A survey. IEEE Transactions on Human-
Machine Systems, 46(1):9–26.

Leonard, S., Allison, I. K., and Olszewska, J. I. (2017).
Design and test (D&T) of an in-flight entertainment
system with camera modification. In Proceedings of
the IEEE International Conference on Intelligent En-
gineering Systems, pages 151–156.

Olszewska, J. I. (2011). Spatio-temporal visual ontology.
In Proceedings of the EPSRC Workshop on Vision and
Language.

Olszewska, J. I. (2012). Multi-target parametric active con-
tours to support ontological domain representation. In
Proceedings of RFIA, pages 779–784.

Olszewska, J. I. (2016). Temporal Interval Modeling for
UML Activity Diagrams. In Proceedings of the Inter-
national Conference on Knowledge Engineering and
Ontology Development (KEOD), pages 199–203.

Olszewska, J. I., Barreto, M., Bermejo-Alonso, J., Carbo-
nera, J., Chibani, A., Fiorini, S., Goncalves, P., Habib,
M., Khamis, A., Olivares, A., de Freitas, E. P., Pres-
tes, E., Ragavan, S. V., Redfield, S., Sanz, R., Spen-
cer, B., and Li, H. (2017). Ontology for autonomous
robotics. In Proceedings of the IEEE International
Symposium on Robot and Human Interactive Commu-
nication (RO-MAN), pages 189–194.

Olszewska, J. I., Simpson, R. M., and McCluskey, T. L.
(2014). Dynamic OWL ontology design using UML
and BPMN. In Proceedings of the International Con-
ference on Knowledge Engineering and Ontology De-
velopment, pages 436–444.

Pan, J. Z., Staab, S., Assmann, U., Ebert, J., and Zhao,
Y. (2012). Ontology-driven software development.
Springer.

Ponzanelli, L., Scalabrino, S., Bavota, G., Mocci, A., Oli-
veto, R., Penta, M. D., and Lanza, M. (2017). Suppor-
ting software developers with a holistic recommender
system. In Proceedings of the IEEE/ACM Internatio-
nal Conference on Software Engineering (ICSE), pa-
ges 94–105.

Roehm, T., Tiarks, R., Koschke, R., and Maalej, W. (2012).
How do professional developers comprehend soft-
ware? In Proceedings of the IEEE/ACM Internatio-
nal Conference on Software Engineering (ICSE), pa-
ges 255–265.

Royce, W. W. (1970). Managing the development of large
software systems. In Proceedings of IEEE Conference
of Western Electronic Show and Convention, pages
205–210.

KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development

310



www.manaraa.com

Sommerville, I. (2015). Software Engineering. Pearson,
10th edition.

Tartir, S., Arpinar, I., Moore, M., Sheth, A., and Aleman-
Meza, B. (2018). OntoQA: Metric-based ontology
quality analysis. In IEEE International Conference
on Data Mining Workshop, pages 559–564.

van Kervel, S., Dietz, J., Hintzen, J., van Meeuwen, T., and
Zijlstra, B. (2012). Enterprise ontology driven soft-
ware engineering. In Proceedings of the International
Conference on Software Technologies (ICSOFT), pa-
ges 205–210.

ODYSSEY: Software Development Life Cycle Ontology

311


